EE 508

Lecture 35

ransconductor Design



Review from Last Lecture

Transconductor Design

Transconductor-based filters depend directly on the g,, of the transconductor

Feedback is not used to make the filter performance insensitive to the
transconductance gain

Linearity and spectral performance of the filter strongly dependent upon the
linearity of the transconductor

Often can not justify elegant linearization strategies in the transconductors
because of speed, area, and power penalties



Review from Last Lecture

Linearity of Amplifiers
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Strongly dependent upon linearity of transconductance of differential pair



Review from Last Lecture

Linearity of Amplifiers
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Strongly dependent upon linearity of transconductance of differential pair



Review from Last Lecture

Differential Input Pairs
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Review from Last Lecture

Signal Swing and Linearity
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Review from Last Lecture

Linearity of Amplifiers
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Strongly dependent upon linearity of transconductance of differential pair



view fram Last Lectur
How finear is the amplifier ?
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view fram Last Lectur
How finear is the amplifier ?

o It can be shown that the deviation
from the line in % is given by

2
% deviation (V% )
| 0=100%| 1-4/1- 4EB

> Vd
Vd/VEB 0 Vd/VEB 0 Vd/VEB 0
0.02 0.005 0.22 0.607 0.42 2.23
0.04 0.020 0.24 0.723 0.44 2.45
0.06 0.045 0.26 0.849 0.46 2.68
0.08 0.080 0.28 0.985 0.48 2.92
0.1 0.125 0.3 1.13 0.5 3.18
0.12 0.180 0.32 1.29 0.52 3.44
0.14 0.245 0.34 1.46 0.54 3.71
0.16 0.321 0.36 1.63 0.56 4.00
0.18 0.406 0.38 1.82 0.58 4.30

0.2 0.501 0.4 2.02 0.6 4.61



Review from Last Lecture

What swings on drain currents are typical when using
the differential pair in a voltage amplifier (Op Amp)?
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If the amplifier is the simple differential amplifier with current source loads
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« This results in a very small nonlinearity in the Op Amp even with very large swings
on the output.

* The current change is also very small

* When used in two-stage voltage amplifier structure, the nonlinearity in this structure

iIs even much smaller!
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Review from Last Lecture _ _
What swings on drain currents are typical when using the

differential pair in a voltage amplifier (Op Amp)?
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» This results in a very small nonlinearity in the Op Amp even with very large swings
on the output.
« The current change is also very small
* When used in two-stage voltage amplifier structure, the nonlinearity in this structure
is even much smaller!

Does this imply that large swings on the output introduce very little
nonlinearity when used as an OTA?

No ! Because when used as an OTA the voltage swings in the input and
output are often about the same!



Review from Last Lecture

Programmable Filter Structures

Often want to program or trim filters (i.e. trim w)

Applicable in wide variety of filter architectures (here showing integrator-based)

Attractive to do this by adjusting g, , in part, because g,, can be
continuously adjustable with some transconductance devices



Review from Last Lecture

What input range is possible when using the tail
current to program the OTA (i.e. after WIL fixed)?
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L
 Input signal swing decreases linearly with decreases in g,, for fixed W/L
* One decade reduction in g, results in one decade decrease in signal swing
« One decade reduction in g,, requires two decade decrease in I;
« Though MOS OTA can have very good single swing with large Vg, very limited
tail current programmability with basic MOS OTA
* There are, however, other ways to program MOS OTA without big penalty in
signal swing



Bipolar Differential Pair
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Bipolar Differential Pair
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Vd = Vz - V1

At Io4=l=14/2, V4=0
As |, approaches 0, V, approaches infinity

As |, approaches |, V4 approaches minus infinity

Transition much steeper than for MOS case



Transfer Characteristics of Bipolar Differential Pair
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Differential input in Volts

Transition much steeper than for MOS case
Asymptotic Convergence to 0 and |



Signhal Swing and Linearity of Bipolar Differential Pair
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Note V,,,is independent of | in contrast to what we saw for MOS differential pairs



Signal Swing and Linearity of Bipolar Differential Pair
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Signhal Swing and Linearity of Bipolar Differential Pair
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What input range is possible when using the tail
current to program the OTA?
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Vi _L/-Q1 Q2:|_ Ve \
N

Since input signal swing not affected by |, Multi-decade adjustment of g,
with | can be made without degrading signal swing



Signal Swing for basic MOS and BJT transconductors

w w
9 = 1Coy T Vieg == \/ﬁ 1Coy T




Signhal Swing and Linearity Summary

« Signal swing of MOSFET can be rather large if
Vg Is large but this limits gain

« Signal swing of MOSFET degrades significantly if
Vg Is changed for fixed W/L

 Bipolar swing is very small but independent of g,

* Multiple-decade adjustment of bipolar g, is
practical

« Even though bipolar input swing is small, since
gain is often very large, this small swing does
usually not limit performance in feedback
applications when used as a voltage amplifier



Does the MOS or BJT transconductor have larger
input signal swing?

w
9n = ﬂCox TVEB

Depends upon how much adjustment range is desired



Simple single-ended OTA




Simple single-ended OTA

I,=1-1, ™
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M =B, (Vy + Vg, + V.
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Taking the square root of the two |, equations
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Adding these two equations, we obtain

(&D (Vo Vi + Vg~ Vi)

flmllarly, for the last two equations, obtain

\/ﬂ%) +\/ﬂi4j\/gz (VGI + Vi + Vi, _VTn)




Simple single-ended OTA
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Squaring the last two equations we obtain
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Simple single-ended OTA
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i 8m =405 |:VTn ~ Vi = VG]
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« Since both M, and M, are driven, this is a power-efficient
method for generating a given g,

» Behavior will degrade with bulk-dependent threshold
voltages of n-channel devices

» Would like to generate V5 and Vs, independent of V,



Bias Generators

Bias voltage generators are widely used to bias cascode devices and
other transistors in an IC

Key goal is often to have bias voltages independent of V, to avoid
coupling supply noise into linear circuits



Potential Bias Generators

Consider the following four circuits:

Inverse Widlar Inverse Widlar

VDD
MST}—ENM M5
Voura(T) Vour(T)
Widlar vy |—— m. M, Widlar
| Vouri(T) Vour(T)




Potential Bias Generators

Widlar '
Inverse Widla Inverse Widlar

. Voon (M Widlar
Widlar

Start up circuits not shown"

If g, is neglected, it can be shown that all devices are operating in the
saturation region, the output voltages are independent of V,

Note all have a positive feedback loop !



Regenerative Feedback Loops Can Provide Some Very
Useful Properties but Can Also Offer Some Surprises !!

Theorem: If the small signal loop gain of the positive feedback
loop 1s less than unity at an equilibrium point of the return map,
then the equilibrium point is a stable equilibrium point and if the
loop gain is larger than unity at an equilibrium point the
equilibrium point 1s an unstable equilibrium point.

Stable Equilibrium
Vour A Point

Stable Equilibrium
Point Unstable

Equilibrium Point
Vin




Consider the Inverse Widlar Bias Generator

| Vo
Ve " M}j} \ — V/ [,
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My 1w \ ( [
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Can be viewed as two common-source amplifiers in a loop

An | As

Same observation about the other 3 structures



Vpp Independent Bias Generators

Consider the two Inverse Widlar bias generators (start-up ckts not shown)

VDD
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5
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M1:] S D\/l2 y
| Vouri(T)
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Assuming all devices in saturation at desired operating point, WL
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2 2 2
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where 0= d M. is the M--M. mi :
Mg R, 1,CoxW; and Mg, is the Mg:M, mirror gain

Note: Outputs Vpy independent !



Vpp Independent Bias Generators

Consider the two Inverse Widlar bias generators (start-up ckts not shown)

Vouro(T)

w v

Vour(T)

Must still check for stationarity of operating point, stability, and start-up



Consider Inverse Widlar with Transistor M, first

PFB Loop
Break Point
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Vpp Independent Bias Generators

Check for stationarity of operating point

Vourz(T)

Vour(T)

For any operating point when circuit designed for
all devices operating in saturation:

g, 1 1
A oop :—1.gm4[ + j

gm5 gm2 gm3
g 21,
K VEB
V.., +V,
ALOOP — EB2 EB3

VEBZ + VEB3 + VTn

* Observe loop gain is always less than 1
« Soitis a viable circuit for a bias generator



Vpp Independent Bias Generators
Check for stability

Vb
|
[
V3
Vour(T) 011 — Voura(T)
C,
e
Vout1(T) Vour(T)
M3 103

» Circuit has 3 poles
« May use RH criteria
» If unstable, adjust one of the capacitors



Vpp Independent Bias Generators
Check for startup Voo

e iﬁﬁ”‘*
Ui
Vo2
Vour2(T)

Vour1(T)

Create Return Map

Desired Operating
Point

L Vout \ A Vout

VDID ’ VIiD
(@) (b) ()
Must have single intersection point (desired point) with slope at unity

gain crossing less than 1 over PVT variations

Add/modify startup circuit if necessary (usually necessary with this structure)



Consider Inverse Widlar with Transistor Resistor

PFB Loop
Break Point
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Vpp Independent Bias Generators

Check for stationarity of operating point

PFB Loop
/ Break Point
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« Observe loop gain is always larger than 1
« Soitis not a viable circuit for a bias generator



Basic Bias Generator Circuits

Only two of these circuits are useful directly as bias generators!

Inverse Widlar

Not stationary
equilibrium point !
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Vo1 = V1

Vo2 = V14

Widlar

Not stationary
equilibrium point !



Transconductance Linearization Strategies

b1y y o2

Recall with Rg=0

Widely used source degeneration




Transconductance Linearization Strategies

V V
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With a straightforward analysis, we obtain the expression
1
Vi = \/%(\/IT —1Ip, _\/IDI)+RS (IT _2ID1)

The first term on the right is the nonlinear term of the
original source coupled pair and the second is linear in Iy,

The larger the second term becomes, the more linear the
transfer characteristics are



Transconductance Linearization Strategies

é(\/IT ~Ipy _\/ID1)+RS(IT ~20p) =V

The transconductance of this structure can be readily
derived to obtain
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Transconductance Linearization Strategies
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Transconductance Linearization Strategies

There are a host of transconductance linearization strategies that have
been discussed in the literature

Some are shown below

Many are strongly dependent upon a precise square-law model of the
MOS devices and do not provide practical solutions when the devices are
not square-law devices

Analysis or simulation with a more realistic model is necessary to validate
linearity and practical applications of these structures



Transconductance Linearization Strategies

How good is the square-law model that we have been using for predicting
filter performance?

It is reasonably good when analyzing structures whose linearity characteristics
are not strongly dependent upon the device model

The circuits considered to date are not particularly linear so the square-law
model probably does a pretty good job of predicting their performance

More accurate models are usually unwieldy for hand analysis



Transconductance Linearization Strategies
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Fig. 1 Linearised CMOS transconductance circuit

ELECTRONICS LETTERS 3rd July 1986 Vol 22 No. 14 729



Transconductance Linearization Strategies

From CAS 2006 P 811 Jose Silva



Transconductance Linearization Strategies
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Linearity Enhancement with Source Degeneration



Transconductance Linearization Strategies

Linearization with active source degeneration



CMOS transconductance amplifiers, architectures and
active filters: a tutorial

E.Sanchez-Sinencio and J.Silva-Martinez

Abstract: An updated wversion of a 1985 tutorial paper on active filters using operational
transconductance amplifiers (OTAs) is presented. The integrated circuit issues involved in active filters
(using CMOS transconductance amplifiers) and the progress in this field in the last 15 years 1s
addressed. CMOS transconductance amplifiers, nonlinearised and linearised, as well as frequency
limitations and dynamic range considerations are reviewed. OTA-C filter architectures, current-mode
filters, and other potential applications of transconductance amplifiers are discussed.




| I
o o
o li o
- | |
v | |
a
0 £
los ,‘L'l::z
Vi — I _@7._5;5
vy, vy
a] N

Linearity compensation with cross-coupled feedback



Single-ended input TAs




Differential input OTAs
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Differential input and output OTAs



Parasitic Capacitances and Floating Nodes

| / V|N —
Vin AAAA Q
R . + _VOUT
Coe | T~ Cor
N4 \v g

Recall: A floating node is a node that is not connected to either a zero-
impedance element or across a null-port

Floating nodes are generally avoided in integrated filters because the
parasitic capacitances on the floating nodes usually degrades filter
performance and often increases the order of the filter

Some filter architectures inherently have no floating nodes, specifically, most
of the basic integrator-based active RC filters have no floating nodes

Invariably the OTA-C integrators have floating nodes so are sensitive to
parasitic capacitances

When filters are programmable or calibrated, floating nodes are less
problematic but may add nonlinearity



Signal Swing in OTA Circuits

The signal swing for the basic bipolar OTA is limited to a few mV for
reasonably linear operation

This limited signal swing limits the use of the OTA

The following circuit (with maybe a 100:1 or more attenuation) can be
used to increase the input signal swing to the volt range and although it
involves quite a few more components, the functionality can be most

significant

Program range is not affected by adding the attenuators




E. L. Geiger and E. Sanchez-Sinencic, "Active Filter Design Using Operational Transconductance Amplifiers: A Tutorial”
IEEE Circuits and Devices Magazine, Val. 1, pp.20-32, March 1985,

Active Filter Design Using Operational
Iransconductance Amplifiers: A Tutorial

Randall L. Geiger and Edgar Sanchez-Sinencio



Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with
either a dc current or a dc voltage

Vi, —
E Vou T(s)= gmgf sC

cecccccccnscccccommmpoccccccnsccnncnn,




Programmable Filter Structures
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Stay Safe and Stay Healthy !
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